The Mc Activity Coefficient Function for Acid-Base Equilibria. Part $3 .{ }^{1}$ Improvement on the Mc Function by Mathematical Treatment

By Nunziata C. Marziano,* Pietro G. Traverso, Alberto Tomasin, and Riccardo C. Passerini, Facoltà di Chimica Industriale, Università, Dorsoduro 2137, 30123 Venezia, Italy

Abstract

The empirical relationship $\log f_{\mathrm{B} j} f_{\mathrm{H}^{+}} / f_{\mathrm{B} j \mathrm{H}^{+}}=n_{\mathrm{ji}} \log f_{\mathrm{B} i} f_{\mathrm{H}^{+}} / f_{\mathrm{BiH}^{+}}$for protonation equilibria in aqueous sulphuric acid, between any two weak bases i and j has been tested. The weak bases examined are primary nitroanilines; amides, tertiary amines, indoles, benzophenones, sulphoxides, and hydroxy- and alkoxy-benzenes. A mathematical treatment which accounts for all the indicators, independently of their structure or acidity range, has been used. The results obtained show in all cases the validity of the relationship examined. Activity coefficient functions have been calculated by using both structurallysimilar indicators and all the compounds. The results show the identity between the particular functions and the general one. A single function [$M_{\mathrm{C}} f(x)$ ' generatrix function'] able to give the dependence on acid concentration of $\left\{\log \left(\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]\right)-\log \left[\mathrm{H}^{+}\right]\right\}$of any indicator is obtained. The analysis of relative $n_{j i}$ values for different or structurally similar indicators show the limitation of classing indicators by series.

OUR previous analysis ${ }^{1}$ of empirical relationships for equilibria of weak bases in aqueous sulphuric acid is here extended to provide evidence for the validity of relation (1) using a mathematical treatment different from the stepwise method. ${ }^{2}$ The meaning of the M_{C}

$$
\begin{equation*}
\log \frac{f_{\mathrm{B}^{j}} f_{\mathrm{H}^{+}}}{f_{\mathrm{B}_{j} \mathrm{H}^{+}}}=n_{j_{i}} \log \frac{f_{\mathrm{B}_{i}} f_{\mathrm{H}^{+}}}{f_{\mathrm{B}_{\imath} \mathrm{H}^{+}}} \tag{l}
\end{equation*}
$$

activity coefficient function ${ }^{2}$ in terms of a 'generatrix function ' $\left[M_{\mathrm{O}} f(x)\right]$ is also given.

The $M_{\mathrm{o}} f(x)$ Function.-Relation (1) can be verified through the experimental relation (2) where $\mathrm{Y}_{j}=$

$$
\begin{equation*}
Y_{j}(x)=n_{j i} Y_{i}(x)+r_{j i} \tag{2}
\end{equation*}
$$

$\log \left(\mathrm{B}_{j} \mathrm{H}^{+} / \mathrm{B}_{j}\right)-\log \left[\mathrm{H}^{+}\right] ; \dagger n_{j i}, r_{j i}$ are constants and suffixes i and j identify the indicators. (x) Is the molar acid concentration.
Since relation (2) is valid for any indicators, i and j, one can write $\left(2^{\prime}\right)$ so that $\left(2^{\prime \prime}\right)$ is obtained, which shows

$$
Y_{i}=n_{i k} Y_{k}+r_{\imath k}
$$

the interplay of the coefficients. It is clear that all the

$$
Y_{j}=n_{j i}\left(n_{i k} Y_{k}+r_{i k}\right)+\underset{\left(n_{j i} n_{i k}\right) Y_{k}+\left(n_{j i} r_{i k}+r_{j i}\right)}{r_{j i}=}
$$

[^0]indicators Y_{i}, can be referred to a specific, fixed Y_{k}, as in $\left(2^{\prime}\right)$. Then we can define Y_{k} as $\mathrm{f}(x)$ and write equation (3) where $N_{i}=n_{i k}$ and $C_{i}=r_{i k}$ in ($\left.2^{\prime}\right)$.
\[

$$
\begin{equation*}
Y_{i}=N_{i} \mathrm{f}(x)+C_{i} \tag{3}
\end{equation*}
$$

\]

Relation (3) guarantees that any Y_{i} indicator can be expressed through a single $f(x)$ function, a 'generatrix function ', and two appropriate constants. It appears, also, that any $\mathrm{f}^{*}(x)$ function, related to $\mathrm{f}(x)$ by (4) is a generatrix function as is $\mathrm{f}(x)$ itself. Any $\mathrm{f}(x)$ function,

$$
\begin{equation*}
\mathrm{f}^{*}(x)=a \mathrm{f}(x)+b \tag{4}
\end{equation*}
$$

relative to the standard aqueous state where $\mathrm{f}(x) \equiv 0$, gives the dependence on acid concentration of any $Y_{i}(x)$ function [$M_{\mathrm{O}} f(x)$ activity coefficient function ${ }_{\ddagger}^{+}$].

Concerning the criterion of estimating a particular $\mathrm{f}(x)$, one has to consider that practically the $Y_{i}(x)$ functions are taken from only a few experimental points, so that any coefficient deduced is affected by an error in the estimation. To replace $\mathrm{f}(x)$ in (3) with $Y_{i}(x)$ would give $N_{i}=1$ and $C_{i}=0$ and clearly the error for these coefficients is zero; but the error on the other coefficients N_{k} and C_{k} with k other than i, is rather large. The

[^1]obvious aim is to give no emphasis to a particular Y_{\imath}, but to share the errors among the various functions. This can be easily done by using the least-squares technique by which the whole set of experimental data is used simultaneously. To this end, the polynomial form (5) has been utilized where the unknowns are the A_{k}
\[

$$
\begin{equation*}
\mathrm{f}(x)=\Sigma_{k} A_{k} x^{k} \tag{5}
\end{equation*}
$$

\]

coefficients of the polynomial. The global error to be minimized is given by (5^{\prime}), which comes from (3) and (5). The values of x to be considered in the summation are peculiar for each indicator, so that they will be different, in general, for the i th and the j th, depending on the

$$
\sum_{i} \sum_{x}\left[Y_{i}(x)-\left(\sum_{k} A_{k} x^{k}\right) N_{i}-C_{i}\right]
$$

available experimental data. Formula (5^{\prime}) is not the familiar quantity to be minimized by least-squares, since certain unknowns appear multiplied by each other. Calculations are obviously more difficult, but any suitable numerical technique gives the optimal values.
The purpose of numerical work is to obtain the best possible consistency of the experimental values with the calculated functions. The goodness of fit of the results has been evaluated by σ^{2} values, so that their magnitude is the parameter able to verify the validity of the model expressed by relation (1). It follows that the new criterion of analysis realises a significant improvement over the stepwise method, used in the first attempt in this field. ${ }^{2}$ This is because it allows indicators to be compared independently from the extension and the range of the overlap. Since all the relations are computed at the same time, it thus avoids possible biases of step-by-step coupling of indicators. However the new results suffer from the approximations intrinsic in the experimental measurements of the reported $\log I$ and $\left[\mathrm{H}^{+}\right]$ values and also from the limitation that a discrete set of points are experimentally available for any indicator. Utilization of experimental points has been preferred, because, in this way, any artificial use of interpolated data is avoided.
The latter procedure was followed in a preliminary paper, ${ }^{4}$ since this allows a constant ratio between the number of experimental points and the interval of acid concentration to be used. Utilization of random Y_{i} values, however, shows no significant differences in the results.

results and discussion

Using relation (3) the mathematical treatment already discussed has been applied to primary nitroanilines, amides, tertiary amines, indoles, benzophenones, sulphoxides, and hydroxy- and alkoxy-benzenes. Using simultaneously all the experimental data the $\mathrm{f}(x)$ generatrix function, representing the acidity dependence of any Y_{i} function, has been obtained. The graph of chosen $\mathrm{f}(x)$, relative to the standard aqueous state ' $M_{\mathrm{C}} \mathrm{f}(x)$ activity coefficient function' is shown in
${ }^{4}$ R. C. Passerini, N. C. Marziano, and P. G. Traverso, Gazzetia, 1975, 105, 901.

Figure 1 (1) The activity coefficient function $M_{\mathrm{C}} \mathrm{f}(x)$ versus concentration of sulphuric acid at $25{ }^{\circ} \mathrm{C}$; (2) $\mathrm{f}_{i}(x)$ functions and estimated errors for tertiary amines (\AA), sulphoxides (\square), benzophenones ($\boldsymbol{\nabla}$), M_{C} (and dotted line); (3) $\mathrm{f}_{i}(x)$ functions and estimated errors for amides (\square), primary nitroanilines (\bigcirc), indoles $(\triangle), M_{\mathrm{C}}(\bigcirc$ and dotted line)

Table 1

The new activity coefficient function M_{C} and estimated errors in aqueous sulphuric acid at $25{ }^{\circ} \mathrm{C}{ }^{a}$

$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right] / \mathrm{M}$	$-M_{\mathrm{C}}$
0.2	0.00666 ± 0.00099
0.4	0.01319 ± 0.00176
0.6	0.01965 ± 0.00236
0.8	0.02610 ± 0.00283
1.0	0.03259 ± 0.00319
1.2	0.03915 ± 0.00348
1.4	0.04583 ± 0.00371
1.6	0.05265 ± 0.00391
1.8	0.05962 ± 0.00409
2.0	0.06676 ± 0.00425
2.2	0.07409 ± 0.00441
2.4	0.08161 ± 0.00458
2.6	0.08932 ± 0.00474
2.8	0.09722 ± 0.00490
3.0	0.10531 ± 0.00507
3.2	0.11359 ± 0.00524

Table 1 (Continued)

$-M_{0}$ 3.4
3.6 0.12205 ± 0.00542 0.13067 ± 0.00559
0.13947 ± 0.00576 0.14841 ± 0.00594
0.15750 ± 0.00611
0.16673 ± 0.00629
0.17608 ± 0.00646
0.18555 ± 0.00663
0.19513 ± 0.00679
0.20480 ± 0.00696
0.21457 ± 0.00712
0.22441 ± 0.00728
0.23433 ± 0.00744
0.24432 ± 0.00759
0.25438 ± 0.00774
0.26449 ± 0.00788
0.27465 ± 0.00801
0.28487 ± 0.00814
0.29513 ± 0.00827
0.30543 ± 0.00839
0.31578 ± 0.00850
0.32617 ± 0.00861
0.33660 ± 0.00871
0.34707 ± 0.00881
0.35757 ± 0.00889
0.36812 ± 0.00897
0.37870 ± 0.00904
0.38932 ± 0.00911
0.39997 ± 0.00917
0.41066 ± 0.00923
0.42139 ± 0.00927
$0.43216+0.00931$
0.44296 ± 0.00934
0.45379 ± 0.00936
0.46465 ± 0.00937
0.47555 ± 0.00937
0.48648 ± 0.00936
0.49743 ± 0.00934
0.50840 ± 0.00931
0.51940 ± 0.00926
0.53042 ± 0.00921
0.54146 ± 0.00915
0.55252 ± 0.00907
0.56360 ± 0.00898
0.57469 ± 0.00889
0.58579 ± 0.00878
0.59692 ± 0.00867
0.60807 ± 0.00854
0.61924 ± 0.00840
0.63045 ± 0.00826
0.64171 ± 0.00811
0.65302 ± 0.00795
0.65302 ± 0.00795
0.66441 ± 0.00778
0.67590 ± 0.00761
0.68750 ± 0.00742
0.69926 ± 0.00723
0.71120 ± 0.00702
0.72337 ± 0.00681
0.73583 ± 0.00659
0.74862 ± 0.00636
0.76183 ± 0.00611
0.77551 ± 0.00586
0.78977 ± 0.00560
0.80470 ± 0.00532
0.82041 ± 0.00530
0.83704 ± 0.00473
0.85472 ± 0.00441
0.85472 ± 0.00441
0.87361 ± 0.00408
0.89390 ± 0.00372
0.91577 ± 0.00334
0.93944 ± 0.00296
0.96515 ± 0.00263
0.96515 ± 0.00263
0.99317 ± 0.00248
1.02378 ± 0.00272
1.05729 ± 0.00347
1.09406 ± 0.00472
${ }^{a} M_{\mathrm{C}} \mathrm{f}(x)$ Function calculated by equation
(3) using all 64 indicators (Tables 2-6).

Figure 1. The corresponding values and their confidence intervals are reported in Table 1.

It can be seen that estimated errors in M_{C} (Table 1) give evidence of the validity of relation (1), as the small uncertainties observed over the whole acidity range can be reasonably ascribed to the experimental errors only.

The goodness of fit and the same curvature observed on comparison between theoretical and experimental Y_{i} plots gives a further test of validity (Figure 2). Further

Figure 2 Calculated curves and experimental points of $\log Q \equiv$ Y_{j} versus concentration of sulphuric acid for primary nitroanilines (for indicator numbers see Table 2)
evidence in this case is also suggested from the σ^{2} value of each indicator (Tables 2-6), the values of which can arise only from the spread of the experimental points.

An $M_{0} f_{i}(x)$ function, by using indicators with the same basic group, has been separately calculated and the

Table 2
Relative $n_{j i}$ coefficients and mean square roots of deviations for primary nitroanilines in aqueous sulphuric acid at $25^{\circ} \mathrm{C}$.

Aniline ${ }^{a}$	$\sigma^{2 b}$	$\sigma^{2 e}$	$n_{j t}{ }^{a}$
4-Nitro (1)	0.030	0.023	1.00
2-Nitro (2)	0.009	0.015	1.052 ± 0.047
4-Chloro-2-nitro (3)	0.016	0.017	0.976 ± 0.039
2,5-Dichloro-4-nitro (4)	0.025	0.024	1.100 ± 0.043
2-Chloro-6-nitro (5)	0.018	0.019	1.081 ± 0.049
2,6-Dichloro-4-nitro (6)	0.064	0.065	0.996 ± 0.048
2,4-Dichloro-6-nitro (7)	0.018		0.939 ± 0.053
2,4-Dinitro (8)	0.062	0.060	0.890 ± 0.047
2,6-Dinitro (9)	0.025		0.842 ± 0.051
4-Chloro-2,6-dinitro (10)	0.043		0.796 ± 0.051
2-Bromo-4,6-dinitro (11)	0.048	0.058	
3-Methyl-2,4,6-trinitro (12)	0.067	0.044	0.942 ± 0.058
3-Bromo-2,4,6-trinitro (13)	0.080		0.913 ± 0.058

${ }^{a} \log I$ Values from C. D. Johnson, A. R. Katritzky, and S. A. Shapiro, J. Amer. Chem. Soc., 1969, 61, 6654; P. Tickle, A. G. Briggs, and J. M. Wilson, J. Chem. Soc. (B), 1970, 65; M. I. Vinnik and N. B. Librovich, Tetrahedron, 1966. 22, 2945 ; M. J. Jorgenson and D. R. Hartter, J. Amer. Chem. Soc., 1963, 85, 878. ${ }^{b}$ Mean square roots of deviations between experimental points and theoretical lines by equation (3) using all indicators. ${ }^{c}$ Mean square roots of deviations between experimental points and theoretical lines by equation (3) using only indicators with the same basic group. ${ }^{d}$ Relative $n_{j i}$ coefficients [see equation (2)] and estimated errors by equation (3) using all indicators.

Table 3
Relative $n_{j i}$ coefficients and mean square roots of deviations for amides in aqueous sulphuric acid at $25^{\circ} \mathrm{C}$

Amide ${ }^{a}$	$\sigma^{2 b}$	$\sigma^{2} \sigma$	$n_{j t}^{d}$
Pyrrole-2-carboxamide (1)	0.021	0.015	0.862 ± 0.039
4-Methoxybenzamide (2)	0.020	0.021	0.962 ± 0.036
3,4,5-Trimethoxybenzamide (3)	0.019	0.011	0.954 ± 0.033
3-Nitrobenzamide (4)	0.020	0.017	1.00
3,5-Dinitro-4-methylbenzamide	0.030	0.027	0.969 ± 0.029
(5)			
2,3,6-Trichlorobenzamide (6)	0.022	0.023	0.915 ± 0.035
2,4-Dichloro-3,5-	0.037	0.031	0.941 ± 0.038
dinitrobenzamide (7)			
2,4,6-Trinitrobenzamide (8)	0.035	0.027	0.818 ± 0.036

Tablb 4

Relative $n_{j i}$ coefficients and mean square roots of deviations for tertiary amines in aqueous sulphuric acid at $25^{\circ} \mathrm{C}$

Tertiary amines ${ }^{\text {a }}$	$\sigma^{2}{ }^{6}$	$\sigma^{2 c}$	$n_{j i}{ }^{\text {d }}$
$N N$-Diethyl-2,4-dinitroaniline (1)	0.038	0.038	0.944
			± 0.086
N-(2,4-Dinitrophenyl)piperidine (2)	0.032	0.032	0.955
			± 0.076
$N N, 4$-Trimethyl-2,6-dinitroaniline (3)	0.019	0.022	1.089
			± 0.083
$N N$-Dimethyl-2,4-dinitro-1naphthylamine (4)	0.037		1.174
			± 0.058
4-Chloro- $N N$-dimethyl-2,6dinitroaniline (5)	0.026	0.027	1.100
			± 0.064
N-Methyl-4-nitrodiphenylamine (6)	0.027	0.029	1.177
			± 0.065
4-Bromo- N-methyl-4'nitrodiphenylamine (7)	0.200	0.180	1.278
			± 0.067
$N N$-Diethyl-2,4,6-trinitroaniline (8)	0.038	0.039	1.029
			± 0.041
N-Methyl-2,4-dinitrodiphenylamine (9) $N N$-Dimethyl-2,4,6-trinitroaniline (10)	0.040	0.040	1.00
	0.021	0.021	0.968
			± 0.055
4-Bromo- N-methyl- $2^{\prime}, 4^{\prime}$ dinitrodiphenylamine (11)	0.015	0.015	0.959
			± 0.048
$x, 4$-Dibromo- N-methyl- $2^{\prime}, 4^{\prime}$ dinitrodiphenylamine (12)	0.062	0.066	1.075
			± 0.052
N-Methyl-2,2', 4, $4^{\prime}-$ tetranitrodiphenylamine (13)	0.148	0.074	1.272
			± 0.064
${ }^{a} \log I$ Values from E. M. Arnett Chem. Soc., 1964, 86, 2671. b-d As	G.		Amer.

Table 5

Relative $n_{j i}$ coefficients and mean square roots of deviations for indoles in aqueous sulphuric acid at $25^{\circ} \mathrm{C}$

Indole ${ }^{\text {a }}$	$\sigma^{2}{ }^{\text {b }}$	σ^{2} c	$n_{j i}{ }^{\text {d }}$
1,2-Dimethyl (1)	0.007	0.011	1.095 ± 0.286
2-Methyl (2)	0.009	0.006	1.254 ± 0.231
1,2,3-Trimethyl (3)	0.025	0.027	1.098 ± 0.165
2,3-Dimethyl (4)	0.036	0.049	1.188 ± 0.096
1-Methyl (5)	0.040	0.042	1.107 ± 0.101
1,2-Dimethyl-5-nitro (6)	0.078	0.077	1.140 ± 0.089
1,3-Dimethyl (7)	0.036	0.038	1.00
3-Methyl (8)	0.030	0.026	1.090 ± 0.078
Tryptamine (9)	0.026	0.050	1.066 ± 0.086
5-Nitro (10)	0.066	0.050	1.636 ± 0.117
Indole (11)	0.092		1.714 ± 0.110

${ }^{a} \log I$ Values from R. L. Hinman and J. Lang, J. Amer. Chem. Soc., 1964, 86, 3796. ${ }^{b-d}$ As Table 2.
observed trend compared with that of the general $M_{\mathrm{C}} \mathrm{f}(x)$. This comparison is a matter of interest, since it might be expected that the $M_{\mathrm{C}_{2}}(x)$ functions obtained for each series of indicators are different, so that the
general $M_{\mathrm{C}} \mathrm{f}(x)$ is only their average. Two arguments show that it is not the case. The acidity dependence and estimated errors of any $M_{\mathrm{O}} \mathrm{f}_{i}(x)$ function (Figure 1) gives evidence of identity between the individual functions and the general one. Comparison between the

Table 6

Relative $n_{j i}$ coefficients and mean square roots of deviations for benzophenones in aqueous sulphuric acid at $25^{\circ} \mathrm{C}$

Benzophenone ${ }^{\text {a }}$	σ^{26}	σ^{2} c	$n_{j 8}{ }^{\text {d }}$
2,4,4'-Trimethoxy (1)	0.049	0.040	0.756 ± 0.031
4,4'-Dimethoxy (2)	0.066	0.081	1.00
$\begin{aligned} & \text { 4-Hydroxy- } 3,3^{\prime}, 4^{\prime} \\ & \text { trimethoxy (3) } \end{aligned}$	0.025	0.029	1.068 ± 0.044
4-Methoxy (4)	0.021	0.017	1.046 ± 0.038
3-Chloro-4-methoxy (5)	0.009	0.020	1.115 ± 0.055
Unsubstituted (6)	0.088	0.076	1.343 ± 0.056
4-Chloro (7)	0.026	0.039	1.130 ± 0.052
3-Chloro (8)	0.014	0.027	1.023 ± 0.050
4,4'-Dichloro (9)	0.062	0.061	1.146 ± 0.025

corresponding σ^{2} values also demonstrates consistency (Tables 2-6). No significant improvement is observed when the $M_{\mathrm{V}_{i}}(x)$ functions are used instead of $M_{\mathrm{C}} \mathrm{f}(x)$.
It appears from the results, mainly from the small σ^{2} values observed in all cases, that the validity of relation (1) is established both within each series, and between any two indicators.* The validity of the numerical treatment is also confirmed. This evidence allows an explanation of the relative $n_{j i}$ values obtained for indicators with the same (Tables 2-6) or with different basic groups (Table 7). The results show that significantly

Table 7
Relative $\boldsymbol{n}_{\boldsymbol{j} i}$ coefficients for indicators with different basic groups

Compounds	$n_{j i}{ }^{\text {a }}$	Compounds	$n_{j i}{ }^{\text {b }}$
4-Nitroaniline	1.00	Primary nitroanilines	1.00
3-Nitrobenzamide	1.843	Amides	1.632
	± 0.088		
N-Methyl-2,4-dinitrodiphenylamine	0.648	Tertiary amines	0.666
	± 0.038		
1,3-Dimethylindole	0.594	Indoles	0.690
	± 0.038		
4,4'-Dimethoxybenzophenone	1.087	Benzophenones	1.248
	± 0.060		

${ }^{\text {a }}$ Relative $n_{j i}$ coefficients [see equation (2)] calculated by using the values of proper indicators. ${ }^{b} n_{j t}$ Coefficients relative to 'primary nitroanilines' by using the average of values inside any series.
different and closely similar $n_{j i}$ values can be observed among members of the same series and among structurally different indicators. The breakdown of the assumption $n_{j i} \simeq$ constant inside any series, ${ }^{4,5}$ follows so that any

[^2]subdivision of indicators in series ${ }^{6-8}$ seems to be unnecessary. It appears unlikely, then, to relate a basic site to

Figure 3 Plots of ($H_{\mathrm{x}}-\log \left[\mathrm{H}^{+}\right]$) versus $M_{\mathrm{C}}(x)$ (odd numbers) and versus $M_{\mathrm{C}} \mathrm{f}_{i}(x)$ (even numbers) for indoles (1), (2), primary nitroanilines (3), (4), and benzophenones (5), (6)

Figure 4 Plots of $\left(H_{\mathrm{X}}-\log \left[\mathrm{H}^{+}\right]\right)$versus $M_{\mathrm{C}} \mathrm{f}(x)$ (odd numbers) and versus $M_{\mathrm{C}} \mathrm{f}_{i}(x)$ (even numbers) for tertiary amines (1), (2), and amides (3), (4)
$n_{j i} \pm \delta$ values. On the other hand, by relation (1), it is possible to account for the behaviour of indicators through similarities in $n_{j i}$ values, as the nature of basic site, by
${ }^{6}$ L. P. Hammett, 'Physical Organic Chemistry,' McGrawHill, New York, 1970, 2nd edn.
itself, does not appear to be a valid method of discriminating among indicators.

Figures 3-5 report a comparison among the activity coefficient functions obtained by different approaches. Plots of $\left(H_{\mathrm{X}}-\log \left[\mathrm{H}^{+}\right]\right)$versus $M_{\mathrm{O}} f(x)$ or versus $M_{\mathrm{O}} \mathrm{f}_{i}(x)$ show different deviations from linearity, although not very large, depending on the series of indicators examined. (Figures 3 and 4). This behaviour can be understood in terms of internal compensation of errors which can occur in $H_{\mathbf{X}}$ upon using the stepwise method and the assumption $n_{j i} \simeq$ constant. The importance of such errors differs from series to series, depending on the extent of

Figure 5 Plots of $M_{\mathrm{O}^{+}}$(stepwise method of ref. 2) versus the new $M_{\mathrm{C}} \mathrm{f}(x)$ for amides (1) and tertiary amines (2)
the deviation of $n_{j i}$ values from the average. The uncertainties which arise from the stepwise method appear in Figure 5 where a comparison between M_{0} functions, calculated by different method of analysis, is reported. N_{i} and $C_{i}\left(\mathrm{p} K_{\mathrm{a}}\right)$ values of indicators will be discussed in later papers.

We are grateful to Professors J. H. Ridd and K. Schofield for helpful discussions. We thank the C.N.R., Roma, for financial support.
[6/330 Received, 16th February, 1976]
${ }^{7}$ C. H. Rochester, 'Acidity Functions,' Academic Press, London, 1970.
${ }^{8} \mathrm{M}$. Liler,' Reaction Mechanism in Sulphuric Acid,' Academic Press, London, 1971.

[^0]: $\dagger\left[\mathrm{H}^{+}\right]=$Molar concentration of H^{+}ions. ${ }^{3}$
 \ddagger The suffix $\mathrm{f}(x)$ in the M_{C} activity coefficient function is here adopted in order to distinguish the present method of analysis from the stepwise one. ${ }^{2}$

[^1]: ${ }^{1}$ Part 2, N. C. Marziano, P. G. Traverso, and R. C. Passerini, preceding paper.
 ${ }_{2}$ N. C. Marziano, G. M. Cimino, and R. C. Passerini, J.C.S. Perkin II, 1973, 1915.
 ${ }^{3}$ E. B. Robertson and H. B. Dunford, J. Amer. Chem. Soc., 1964, 86, 5080.

[^2]: * The confidence that $n_{j i}$ values for any indicator remain constant over the whole acidity range, where experimental $\log I$ values are not available, can be discussed in terms of probability. Since no exception has been observed for a very large number of indicators, in the range where experimental data are available, we consider relation (1) valid. We believe that some guarantee of its validity can be derived from the consequences of its applications.
 ${ }^{5}$ T. A. Moodie, K. Yates, and J. Janata, J. Amer. Chem. Soc; 1975, 97, 1942.

